RX8 Project – Part 16, Fitting Piston Cooling Oil Jets

These are something I hadn’t really come across until I started working on this project. While I was researching the work Noble had done developing their twin turbo engines I found the installation of piston cooling oil jets noted as one of the modifications undertaken. On the basis they found it was fine to use the stock pistons but did this mod I started doing research into what exactly they were and why they were used.

The usage of these jets seems to be almost exclusively related to turbocharged engines, both diesel and petrol due to the amount of energy released in these engines. This increased release of energy caused by burning more fuel in pressurised air generates much higher temperatures inside the engine and while the block and head are actively cooled most normal engines rely on incidental oil spray to keep the piston cool. Once you start getting the piston considerably hotter you have a couple options. Either use a piston material which will cope with much higher temperatures without degrading (either due to the temperature affecting the material properties or due to thermal expansion) or somehow cool the piston. Various materials have been used for high performance pistons to help negate the material strength and thermal expansion problems with varying degrees of success but these are generally very expensive made to order parts and well beyond the range of most. This is where the jets come in.

The jet is usually some sort of nozzle drilled into an oil gallery in the block which directs a stream of oil at the underside of each piston. This both cools and lubricates the piston and rod small end/pin.
The original Noble modification is known to have some issues but this was more of a problem with the implementation. Take a look at this : http://noblecars.org/engine.html

The basic problem of the original Noble method is that with such large drillings (probably about 4mm diameter) the cooling will be very effective because the flow rate will be high but the overall engine oil pressure will likely be very low, particularly around the main bearings because that is where they are drilled into the oil supply. Clearly the one place you don’t want low oil pressure!

So me being me I decided to improve on the situation! Firstly I found that most cars that have these fitted (unsurprisingly) use considerably smaller jets, the best example I found was a NASCAR engine using a jet of 0.75mm (I have since tried to find this page again with no luck). Not wanting to risk trying to drill a hole of such a small diameter freehand at the bottom of the cylinder bore from the top I took a slightly different approach and started looking for suitable nozzle inserts that I could use that were available easily and cheap. After a lengthy search trying to find something intended for the purpose (from either a suitable production vehicle or something) I gave up and started just trying to work out what I actually needed and realised that with the rise of home 3D printing small nozzles were actually easy to get – specifically the extruder nozzles used on these printers. These nozzles are usually brass, have an M6 thread and are available in a range of hole sizes, for me the 0.8mm version looked like a good match.

3d printer nozzle

I bought a pack of four nozzles off eBay for a few pounds and decided I should see what sort of spray I actually got from them – I wanted them to produce a fine jet at the normal engine oil pressure rather than a mist as this would assure the oil reached the piston rather than most of it just hitting the inside of the cylinder bore which would achieve nothing. Because I’d decided on the M6 thread it made a test jig quite simple, just a normal M6 nut welded on the end of a bit of 12mm tube. When welding anything threaded it’s a good idea (particularly on smaller threads) to put a suitable mating part in to prevent distortion if you can. In this case I used a standard M6 bolt. After welding the nut the bolt can simply be unscrewed again but if you don’t do this the heat will often distort the thread enough that it is unusable after welding. The 12mm tube just happened to be about right for the nut but also a good size to allow a normal garden hose to fit over it. Water pressure in the UK is nominally about 3 Bar which is at least in about the right area to represent an oil pressure. Also there is the question of viscosity but my logic told me that oil being more viscous than water should not form a mist as easily, so if it worked with water oil should be fine. The test showed a solid jet out to about a meter from the nozzle and beyond that a tight stream of droplets another meter or so. This should certainly be good enough for what I need!

After this test I decided to go for it, so I ordered another set of four nozzles and started trying to work out how to actually machine the block to make them fit. Due to the position the jets need to be installed the oil feeds need to be drilled from the crank bearing housing 60° either side of the centre line to match the cylinder bore angle and also at a slight angle forward or backward (depending on which cylinder it is) so they actually come out into the shoulder at the bottom of the bores rather than just continuing between the cylinders.
First off I marked up the 60° line for each bore so I had something to line the drill up with for the angle and the starting point for the drilling. Next I found a drill bit that nicely fitted into the groove in the bearing housing so as to avoid reducing the supporting area for the bearing which as it turns out is a 3.2mm. This is the area that apparently will crack on the Noble engines – they use a significantly larger drill hole here which breaks into the bearing support lands and I suspect this is part of the issue but that’s purely speculation. There is also no issue with restricting the flow to the jets here because the jets are now significantly smaller than drilling. The next important thing is this involves drilling quite a long, narrow diameter hole through aluminium and that can be quite problematic!

First off let me say this is next bit is a bad idea all round, you either have to be very confident in your abilities with a hand drill or not care if you ruin an engine block. Ideally you want to be both! If not you will want to talk to a machine shop to do this!

Before you start remember to remove the bearing shell itself and put it somewhere safe! Aluminium is a soft material and will stick to drill bits and tend to generate heat due to friction, if it gets hot enough it can actually seize onto the drill bit causing it to break. Firstly a normal length 3.2mm drill won’t be long enough for this job, it will work to an extent but the flutes will eventually be covered by the sides of the drilled hole when you get deeper and there’s nowhere for the chips of aluminium to go. My advice is to buy a long series drill bit and use it. Start the hole with a normal bit because long bits are more flexible and can be harder to get and accurate start with but once you have a dimple that will hold the bit in place swap to the long series. Use plenty of lubricant (go on, guess how I found that out!). You can use WD40 but it can get quite expensive if you have a few holes to do as it tends to vaporise off during cutting. Thicker oils tend to protect the cutting edge more but make cutting slower but in this case aluminium is soft and so drills quickly anyway plus we’re only making a small hole so it will make little difference. Personally I used 3in1 on mine with works well and helps flush the chips out but you will need to reapply the oil to the hole regularly during the process to make sure the drill is well lubricated. You could also use engine oil or even gearbox oil but these would probably slow the process a little more. Go slowly and let the tool do the work, if you push too hard there is a serious risk of flexing the drill bit which at best will give you a hole that wanders and at worst a serious risk of snapping the drill bit.
Once the 3.2mm hole comes through into the shoulder at the bottom of the bore we need to make the M6 nozzle fit, this means tapping a suitable thread into the bore end of the drilling. First clean out all the swarf (drilling debris) from the new hole. At this stage this is just to make sure we get a nice clean thread cut. Now we have the interesting bit, to tap M6 we need a 5mm pilot drill, so we have to drill out the cylinder end of the 3.2mm drilling to 5mm with enough depth for the nozzle to screw in but the only way to do this is to do it from the top of the bore with a really long drill! I went on eBay again and bought and extra long series 5mm drill for the job. This thing is 250mm long and looks absolutely ridiculous in a cordless hand drill.

Extra long Series Drill

It actually looks more like it should be used on masonry but these have the normal tip and are actually for metal. If the one you buy has a flat ceramic insert in the tip you’ve bought the wrong one! 5mm Drill Jet

I suggest you mark the depth you need to drill to accommodate the nozzle thread (with a little extra room for tapping) on the drill bit. The actual depth here isn’t critical as long as there’s enough depth for the nozzle threads at a minimum. Again plenty of lubricant and drill with slow speed and light pressure and be very careful to keep the drill loaded straight otherwise at best your hole will be at a funny angle but at worst you may snap the drill and damage the bore surface.

5mm Drilled hole

Next clean the swarf out again so we can get a good thread tapped. Tapping the holes is another slightly awkward problem for the same reason as drilling the pilot hole, we need to do it from the top of the bore. I suggest going on eBay (or any of a thousand other places online) again and looking for an extra long ratchet tap wrench. These are available under any number of brands but I suspect they’re largely all from the same place. They are available in a small version, which is 250mm long and will tap M3-M10 or a large version which is 300mm long but taps M5-M12. I went for the smaller one because the smaller chuck should allow tapping tighter to the cylinder wall without damaging it and this is likely to be tight for this task. Expect this to be about £10. While you’re at it buy an M6x1 plug (bottoming) tap!

Tapping the Jets

Again proceed slowly with a well lubricated tap, many people will say you need to use proper cutting compound but for a small hole in a soft material this isn’t necessary, 3in1 will be fine. Try to cut forward a bit (maybe a turn at a time or so) and then back the tool off until you feel it turn smoothly. This will help prevent the tap from clogging up and either seizing up or damaging the new thread by material being forced against it. It may be necessary to back the tap out entirely to clean the removed metal from the threads because this is effectively a blind hole. Be careful not to keep going once the tap bottoms out. If you aren’t careful it’s comparatively easy to strip the threads in the aluminium with such a small tap and then it would be awkward to repair. If you’re not confident this really isn’t an ideal job for anyone new to tapping because it relies on having a degree of ‘feel’ about what you need to do and when to stop.

Rinse and repeat five more times and congratulations you now have six neatly drilled and tapped jet positions! Before doing anything else clean everything again, I used a combination of brake clean, compressed air and a scribe. You need to make sure there is no swarf left in the drillings so you don’t risk that jet becoming clogged. Once clean you need to fit the jets. The jets I selected have an external hexagon and so can be tightened up with a socket wrench but you will need sufficient extension to reach the bottom of the cylinder bore with an appropriate sized socket. Clean all the jets with brake clean to degrease them – technically this is not necessary but it helps remove any other grime that has become stuck to the jets in manufacture/transit. Next I recommend you apply a small dab of a suitable thread locker to the jet threads, specifically I went for Loctite 243 which is a medium strength thread locker which will resist oil. You can use others but if you go for anything stronger you’ll need a blowtorch to get it out and trying to do that down a cylinder bore could be interesting! Once you have the dab of Loctite on the jet you need to screw it into the newly tapped hole – I found it easiest to do this carefully from the crank side of the block by fingertip but your mileage may vary! Once you have it in enough to keep it in place tighten it in with the socket wrench. The jets will only need to be nipped up for two important reasons; firstly they are thread locked and so will not vibrate loose and second they are small and made of brass so any more force will likely strip the hex.

Piston Jets Fitted
That’s it, one new set of shiny piston cooling oil jets! More on this project coming soon!

RX8 Project – Part 15, Engine Strip #2

So having removed the timing chain and tensioners (see part 1) next we need to start looking at removing some more major parts of the engine.

Having already removed the cam covers already you should be looking at something like this:

Jag Cams

Thanks to the Jag Motor Project for the image – hopefully they don’t mind me borrowing it! It seems I have misplaced my own photo of this!

You need to remove the cam bearing housings because the design of this engine has the head bolts directly under the cam making it impossible to remove the head with the cams still in place. This is worth remembering and is at least part of the reason stretch bolts are used for the head – it is impossible the re-torque them after an interval of use without removing all the timing gear. As you can see in the photo these are three smaller housings and one larger one at the front each held on with two small bolts. Basically you just need to carefully remove these bearing housings in order. I suggest marking the direction and its position on each one before removal. The position could be achieved by putting each into a small tub which is numbered. However you do this you need to know which is which and which way round they go. Remove them carefully and make sure you don’t drop any bits! Once you have removed the housings you’ll see this:

S-Type V6 Cams Removed

Now we have clear access to the head bolts which as you can see in the photo there are eight of. These are fairly easily removed except for one thing – the bolts are set well down into the head and there is very little room in the recess to put in a socket. You will need a 15mm socket for these bolts and a small breaker bar (or an impact gun) as they will be quite tight.

These bolts are not reusable – I mean you can but it’s a terrible idea particularly in such a critical location because odds are high it will not be up to the job. This is because “stretch” bolts rely on the material of the bolt reaching the yield point of the material at which it begins to exhibit a fairly constant elastic stretch. In effect once they start to deform they behave a bit like a very stiff spring and so if tightened correctly will hold a very accurate load without loosening and so do not need to be re-tightened after a run in period. That said hang onto them for now so you know what to order to replace them!

S-type V6 Head bolt removal

You can see how tight the casting is around the socket! Once all the bolts are gone you can lift the head away. It might take a little persuasion with a mallet. Make sure you have a suitable clear space to put it on once you remove it.

Now you should have this level of grime:

S-type V6 Head removed

Obviously you can just pull off the head gasket now to improve the situation quite a bit and you can have a good look at the state of the engine:

S-type V6 Factory Hone

Here you can see the cylinder bore actually looks in very good condition and even still has the factory honing marks on the bores which is a good sign it’s been working well and shouldn’t have suffered wear issues.

Now do all of that again for the other head and you should have something that looks a bit like this:

S-type V6 Heads Removed

Congratulations now you have an engine with no heads but since my plan was to upgrade the rods I still needed to remove more so flip the engine over and we can get to it.

S-type Oil Pump

In the picture you can see the oil pump is just held on by four small black bolts. I put the crank bolt back in place just so I didn’t lose it but you would have removed this a long time ago. Once the four small bolts are out the oil pump can just be slid off the crank and put aside.

S-type V6 Front Oil Pump Removed

 

Next we need to remove the con rod bolts and this is where having the crank bolt comes in because you can put it back in finger tight and once it snugs up a bit you can turn over the engine to get access to all the rod bolts. Mark up each rod with a cylinder number and arrow for the front of the engine. I put sharpie marks across the split line of the rod to make it easier to match them up later. I had to use something to knock the piston out of the bore use something non metallic otherwise you will likely damage a surface you don’t want to damage. I used a length of wooden dowel. Do these carefully unbolting and removing one at a time. When knocking the piston out don’t forget to catch it before it falls on the floor!

S-Type V6 Oil Pump Removed

So all we have left is the crank. If all you wanted to do was straight swap the rods this is as far as you need to get. Well I wanted to do a few other while I was at it (more on this in another post) so I carried on to remove the crank. This is actually pretty simple at this point, you just take out the 16  main bolts holding the lower block to the upper block along the bearings. The other thing you can see in the picture are the engine mounts, the rubbers here aren’t stock s-type, they’re actually from a V8 Land Rover (Discovery among many others). The reason for this is they’re very strong, extremely cheap (£7 a pair delivered from eBay) and have a stud each side which will fit straight onto the factory cast aluminium mounting arms and also make mounting onto the car really easy when we get to that stage!

S-type V6 Lower Block

It’s worth noting in the above picture not all the bolts are the same. This is because some have small studs on the top to allow the windage plate to be mounted (blue). Note which goes where so this can be put back later! Next you also need to remove the 6 outer bolts (red) before the block will separate.

S-Type V6 Lower Block Bolts

Once all the bolts are out again you might need a gentle tap with a mallet and/or a scraper to get the block apart. Don’t drop the crank bearings!

If you’ve done all of this you should have something a bit like this in front of you:

S-type Stripped 2.5 Block

And a heap of bits you just removed:

S-type Engine Parts

More to come on this project in my next post!

RX8 Project – Part 2

In part two we look at finally getting the engine clear. In reality due to the time I had available this process actually took something like three months. A qualified professional mechanic can remove the engine in an RX8 in as little as three HOURS! Clearly I’m not a professional mechanic!

I didn’t fully document the process as there are any number of people who have already done excellent write ups of this but hopefully I can offer a couple of pointers to anyone trying to do this. Officially the engine should be removed by dropping out the front sub-frame and not being able to do this easily on a driveway has led me to removing the engine upwards. This adds a few minor problems along the way but nothing insurmountable

One thing I found is that you really need to remove the crank pulley to clear the front crossmember. While you probably could yank it past regardless it makes the process notably easier.

RX8 Crank Pulley
RX8 Crank Pulley

With somewhat awkward visibility it can be hard to tell whats going on but it looks like this. You do not need to remove the main bolt – the pulley is just held on by the four small bolts around it (already removed in the photo).

The next major problem is removing the engine mounts. I found it virtually impossible to get at in any conventional way. You can get a ratchet on but they’re quite tight and there’s little room, and a breaker bar doesn’t have room to move. My solution to this was to undo the bolts from the top of the engine bay with a selection of extensions. These need to be 1/2″ drive as my 3/8″ drive ones were starting to flex a bit plus you will probably need a breaker bar. Due to the angle restriction a UJ is also required. While the whole assembly looks a bit bodged it works fine.

RX8 Engine Mount Removal
RX8 Engine Mount Removal

Also the oil line connectors, these are really awkward and are usually corroded solid. Hose them liberally with WD40 and let it stew overnight if they are a problem. If you plan to use them again don’t lose the small retaining wire ring, these can be hard to replace (though can probably be replaced by a snap ring from an engineering supplier).

After another brief pause for another project we started watching some car based youtube videos (Roadkill and Mighty car mods for anyone interested) and after feeling inspired to do car-ish things and pull the engine out.

RX8 Engine Bay Night
RX8 Engine Bay Night

My best advice on this one is – don’t try to remove an engine when it’s dark and drizzling!

RX8 Engine Out
RX8 Engine Out

Next up, rotary engine autopsy! Coming soon!