Upgrading a SIP Migmate 130 Turbo welder – Part 2, The 6m Dollar Welder

So after it had been left abandoned in a cupboard for a couple years I was recently contacted by the guy who actually owns the old SIP Migmate welder saying he had a couple projects to do that would be good for a MIG but aware we’d previously done it serious damage to the torch he’d found a wire feed unit with a euro torch connector on ebay and could we make it fit. Well of course we could, what could possibly go wrong! Before I knew it he’d ordered it to ship to me so I guess we were modding the welder again. We can rebuild it better than it was before!

Upgraded Wire Feed

Wire feeder
The new wire feed motor

So this is what turned up – clearly a different beast entirely to the original plastic rubbish. Don’t be mistaken, it’s a top quality Chinese unit but it is significantly better built than the original – one being mostly metal it doesn’t deflect under load. Add to that the motor is rated at 40W which is probably four times more than the original one it should be able to drive wire through longer torch leads with no problem.

Wire feed drive comparison

You can clearly see the significant difference in the units in this picture. But that isn’t going to stop us!

First off we need to remove the existing feed unit. These are held on with four pop rivets which are quickest removed with a power drill. To extract the drive unit the torch must also be unbolted from it with the one retaining nut.

Migmate 130 of feed removal

So at this point you should be left with this :

At this stage you’re probably wondering how this will work, and if (however unlikely) you’re attached to this welder you probably want to stop reading, this will not be pretty!

If you’re you’re not attached to the welder I suggest finding an angle grinder and getting busy!

The key thing to note here is because the new drive is for a euro torch it is energised by the main supply so no conductive part of the feed drive can be in contact with the casing. Add to this the new unit has an adjustment on the top which needs clearance under the case the feed motor cut out needs to continue much lower down.

Due to the feed mechanism being physically wider the connector for the euro torch connector will sit further out than the original torch outlet. In an ideal world I’d have relocated the the wire feed to the bottom of the welder but the outlet inductor is behind the panel and I didn’t want to go trying to move that enough for that idea to be viable.

First cut for wire feed

The first cut doesn’t look too serious, then hack the front out :

Front first cut

Hmm, yes I’ll work out how to cover that up later!

Next up we make a plate to hold the euro connector. This is to prevent any movement on the euro connector causing it to hit the case which could end very badly. I found a random bit of polycarbonate I had lying about drilled a clearance hole in it then worked out where it needed to sit. The horizontal position here is less critical as we can adjust it on the mounting later. The plate needs mounting holes to fix it to the front plate so drill and bolt this. A trial fit then also identified that when the new feeder was fully forward in position more clearance was required in the internal plate so this needed a little more butchery.

New mounting for replacement wire feeder

The blue wire dangled through the divider in the picture is actually the trigger wire for the welder something we’ll need to sort out later to actually make it work.

Wire feeder trial fit

So here’s the trial fit, nothing touching the case where it shouldn’t and all seeming to fit well. around this time I wanted to get a matching torch for the upgraded welder so I went to my favourite welding shop (Noz-Alls in Cheltenham) to pick one up and while there I explained what I was up to with the welder and he helped me out with some more bits he had. Specifically I wanted to upgrade the welder from using 0.7kg wire spools to 5kg spools so I needed a new mount for the reel and not only did he have something he also mentioned that I’d suitable gas valve (the welder originally had a mechanical one in the torch but I hadn’t even thought about the fact euro torches don’t have this. Again he had just the thing available for a few pounds so I got that as well.

New feed roller

Now that looks more like a proper setup, this new mount just bolts through the divider plate. Next up we need to mount the drive motor itself, it is critical to remember the black plate under the drive must remain to insulate it from the mounting bracket. I originally intended to mount it with a section of angle but in the end I came up with another alternative. I had a short offcut of 40x40mm aluminium profile with a couple angle fixings which by luck was perfectly sized so I decided to use that up.

Mounted new wire feeder

Something I should probably note here is using either durloc or nyloc nuts on everything I can and make sure everything is good and tight. The owner of this welder can be hard on equipment and I want to be sure that when I hand it back it won’t just fall apart!

Fully fitted wire feed and reel holder

That’s the wire feed and 5 kg reel setup all installed. So now back to the problem I mentioned earlier with the gas valve. The black hose coming off the back of the euro connector is the gas line, I need to connect this to a valve. I decided to mount the valve on the electrical side of the welder because my plan was to drill out the original hole the gas hose entered through to take a more standard 3/8″ BSP threaded fitting.

Gas Valve

New gas valve

The valve I bought is a direct fit to the 5mm ID hose off the euro connector. The valve inlet is an 8mm barb so I bought an 8mm to 3/8″ BSP female hose barb and screwed it into the back of an 3/8″ BSP bulkhead fitting. The bit of hose is a section of 8mm fuel hose I had lying about. The valve actually has a nut on one side to allow it to be mounted to a panel, in this case I mounted it to a section of aluminium angle. These valve are available in a range of voltages; usually 6/12/24VDC in welders but others are available. Since the feed motor is 24 VDC and we need this to open when the feed is on it makes sense to use the same then we only need one trigger switched supply for both.

Earth lead

So with the addition of a detachable torch I thought a detachable earth lead might be a good idea. I bought a 10-25 dinse connector off ebay, this comes as a plug and socket pair where the socket fits through a hole in the panel and the plug is bolted onto the end of the cable. To mount the socket I undid the clamp inside the welder where the cable was fixed to the supply transformer. The cable is held in by a plastic clamp so just undo that and pull the cable clear and remove the clamp from the panel. As it turns out the panel hole was fitted with a dinse connector in a different model and so they actually fit the panel perfectly with the anti-rotation key even fitting. Again for the power connection to the socket I used a 10mm re-usable cable lug but had to fold the solid core from the transformer back on itself so the clamp would tighten onto it solidly.

Dinse connector
Make sure it’s all tight; you don’t want this coming loose!

Wire Feed Controller

I decided in the end rather than bothering to improve the existing speed controller which is well documented to have issues I’d simply replace it with a modern PWM DC motor controller. PWM controllers generally allow a very wide range of adjustment and because they apply full voltage the motor retains excellent torque even at low speeds. So I bought another quality Chinese board off ebay and after a couple weeks I had one of these:

These go for about £2.50 and from my initial tests with a 19 VDC laptop supply and the new 40W motor it worked perfectly and it gave very smooth control up through the full range. The only thing that might need adjustment later is that full speed seems excessively fast for a welder but this is something to assess when the motor is loaded. With the smoothness of the range this wouldn’t be a problem but if we don’t need it later it would be better to add a resistor to make the controller only go up say 75% full speed when the dial is at maximum. But we’ll worry about that later.

The next problem is the nut on the potentiometer which would normally hold it in place fits right through the original hole in the panel. So I found a large penny washer which it would tighten up on and drilled two holes in it. This washer was then pop riveted to the front panel. With the knob back on you cant even see the rivets.

New motor controller
Rear view of the new controller
And the front view – you can see the other additions as well

Now, you may notice I’ve taken out the original PCB. This is partly because we needed the spot for the new speed controller but also because that makes about half the PCB redundant. The only other things on the PCB are a small 12V PSU (to drive the main supply relay), a couple line filter capacitors and a 16A relay which switches the main supply. My plan is to replace the relay with a 24V coil one and run all the control off the separate 24 VDC supply.

More to follow in the next update!

Upgrading a SIP Migmate 130 Turbo welder

The story of this upgrade starts with a friend of mine acquiring it about 15 years ago (at which point it was already quite old) and after some use real life got in the way and it was abandoned in a barn for about a decade. At this point I needed a welder for a project and asked to borrow it. Now when I got my hands on it and started trying to use it it became immediately obvious these welders were amazingly basic and poorly constructed and so immediately I started modifying it to make it work a little better.

Factory Wire Feed

First off the standard wire feed is terrible, it’s made of plastic and if you put enough pressure on to push the wire the mounting for the drive (being plastic) actually bends away and just won’t consistently grip. This situation can be improved by changing the plastic torch liner out for a steel one to reduce friction but it’s still dodgy. Bracing the wire feed on the outside helps as well.

Migmate 130 Feed Mod

Here you can see the feed modification. It is simply a bit of scrap metal with a slight bend in it and two holes. The two screws are already in the feed system and hold the parts from the factory so it just picks up on them. This simple mod helps the two feed rollers from deflecting away from each other.

The next issue with the wire feed is the motor is driven off the main transformer output with half wave rectified DC which causes a one main problem, the supply to it isn’t consistent. When the arc is struck the voltage at the motor will drop due to the load change on the transformer which tends to make the motor constantly pulse in operation rather than give a consistent feed so it’ll join metal but not in a particularly convincing way.

To get round this I added a small regulated 24VDC supply for the motor with the help of information I found on the internet such as the wiring diagram for the welder. The was this works is the control board gets its 24V supply from the black wire on the 4 pin connector. If we disconnect this and instead feed it our own 24VDC the supply shouldn’t fluctuate any more. I used the existing supply (the black wire we just intercepted) via a relay (24VAC coil) to turn on the wire feed when the output energises. You should end up with something like this

I’ve not checked the rating on the factory feed motor but I would guess 10W at most. I used a 24VDC 15W PSU module (specifically a Tracopower 15124C that I found on ebay) and it worked well. I managed to fit it behind the main transformer bolted to the outer casing.

Added power supply location

Further to this the motor speed circuit is actually very poorly designed and after a little use can get twitchy and change during use. I didn’t get as far as modifying this but further information can be found here :

Wire speed mod

Or if that should ever go offline also in this PDF :

Earth Lead

Another key usability thing is that these welders have very short leads and the clamp was poor from new and appeared to be a similar thickness to tinfoil and added to that was badly damaged and even rusty and since poor contact causes many issues with consistent welding so I decided to upgrade the cable and clamp to help the situation. For a welder this size you need to be looking at a minimum of 10mm2 cable but this will not allow you to operate at full power consistently (not that this welder is actually capable of that anyway!) 16mm2 would give you plenty of spare capacity.

The clamp itself was just bought off ebay again, they’re about £4 each so difficult to go far wrong. You could go for a different style to the normal clamp if you prefer such as a magnetic one. To connect the cable to the stud on the clamp I used a reusable cable lug which uses two small bolts to tighten to the cable, you could buy crimp lugs but crimping them without the correct tools can be hit and miss. I’ve heard a cold chisel will work but your mileage may vary. I actually used a second reusable cable lug to clamp the new cable onto the transformer outlet inside the welder – not the neatest solution but it worked.

Gas Supply

The standard shielding gas supply on these welders is via a small plastic tube which is intended to be connected to a mini-bottle which sits in two brackets on the back. The brackets aren’t actually fixed to the welder so can be easily knocked off. The standard regulator is rubbish and the one I got with the welder was totally seized shut. I bought a like for like replacement initially and this highlighted the limitation here. The bottle is so small and the regulators so poor that the gas flow actually changes during use and rapidly empties entirely. They have no gauge and so the first you know of having no gas is when your welds go horrible. I looked into it and found a good solution – you can buy regulators that adapt a normal gas bottle to this type of hard line.

I looked into getting gas and found that the time of massive rents on bottles is over. In the UK there are a couple networks of suppliers who will give you weld gas with only a bottle deposit (currently £65 for mine) and no ongoing rental charge. Once the bottle is empty you take the bottle back and get a full one and just pay the gas fill cost (about £30 for the bottle I have) I found a supplier of Hobbyweld gas (Noz-Alls Cheltenham – www.weldingdirect.co.uk) and got their 10L bottle, these are pressurised to 137 Bar giving a total of 1370L of gas. This lasts drastically longer. The shop I went to also sold a standard regulator but with a crimped hose and a push fit to suit this welder off the shelf making this very easy for about £20.

Roll Drag

One other problem I had was the tension spring which is supposed to hold the roll under a little tension to prevent overrunning was actually sharp and biting into the reel. I added a large flat washer under the spring to stop this then added a small washer as a shim to prevent it being over-tightened. This provides friction over a large area to avoid this problem and it seems to work well.

So once I’d done all of this it worked significantly better and we used it for a few projects to good effect right up until we tried to repair and refit the load bed of a pickup truck which involved welding plates onto chassis rails and various other extensive welding work. After burning through multiple contact tips and a couple shrouds we got to the point where the torch died entirely with the wire welding into the inner workings of it and came to the conclusion it was done for. The torch on these being hard wired into the unit finding a replacement wasn’t as simple as a standard euro torch and at this point I wasn’t sure it was worth replacing until we actually needed it again. Some time later I bought a new compact R-Tech MIG which by comparison is a revelation and so the old Migmate got thrown into a cupboard for storage with the expectation it would eventually probably be scrapped.

Though that’s not exactly how the story ends…