RX8 Project – Part 11, Turbo’s #2 – Wastegates

So now the project is going in the turbo direction I need to be a bit wary with how I do it. The GT1549 turbo’s I chose had positives and negatives. They looked to be exactly the right size for the engine I had, they were fairly common in one form or another and importantly the price was spot on! I still don’t understand quite how but I managed to find someone on eBay with a matching pair of these turbos fully cleaned and rebuilt for £65 each delivered! So that’s the positives, now the negatives, firstly rather than the normal bracket bolted to rear of the compressor housing to hold the wastegate actuator. On these turbos it is actually cast into the housing and so it would make rotating the housing to fit the application considerably more difficult. The second problem is they have a factory fitted actuator which isn’t adjustable more than a small amount and I really didn’t want to start tweaking a completely untested engine with no idea what was going to happen with no way of keeping the boost below the 18 psi wastegate pressure!

So getting over these problems. Having looked at the rotation problem I came to the conclusion I should be able to make them both fit with no rotation changes needed. The backup plan here was to grind off the cast in mount and custom make a bracket using a bit of steel plate if it turned out I needed to later on. This takes us to the wastegate problem. I looked at a number of ways of providing a reduction in the actuator pressure including adding springs to the rod side of the actuator and even bolting the internal wastegate solid and fitting external wastegates to the manifolds I came to the conclusion the only real way of giving a wide but reliable range of adjustment while keeping the package as small as possible would be to replace the stock actuator with an aftermarket adjustable one.

Now this is where the plan goes a bit wrong about – after looking about for ages to find a sensible option at a half sensible price the best I could come up with was this : Kinugawa Actuator 

Kinugawa Actuator

I’m under no illusions here, this is a a cheapo unit! But I strongly object to spending the cost of the car on each wastegate. The problem is even though I got these for £68 each which really is very cheap they actually cost more then the pair of turbos! Considering all this it’s still a pretty good option because it is a ‘universal’ version. It comes with a range of springs for different pressures so I can start at just a few psi and swap the springs out as needed and also comes supplied with four different actuator rods.

So here we are – actuators!

Kinugawa Package

So at first glance they look ideal, but don’t let that fool you! There’s a couple engineering problems to overcome.

Actuator Flap clash

The first problem is this; the hole in the supplied rod end isn’t large enough for the flap actuator on the turbo. The solution is simply to drill this out to fit. I didn’t note the sizes, but it was a standard drill size.

Next up was that this ‘universal’ actuator was never really intended for a turbo this small and as such the shortest actuator rod is too long to allow the wastegate flapper to close so I had to modify that as well. The rods are nominally 6mm diameter but the end the rod end has a fine pitch thread meaning modifying that would need me to buy a fine pitch die to extend the thread. Luckily the end that goes into the actuator is a standard M6x1mm metric thread so that was the easier option.

Modified Actuator Rod

I measured how much I needed to shorten the rod to allow the flapper to just close at one end of the rod ends adjustment. The opening pressure of the actuator is set by preload so the more it is tightened greater the boost pressure. I then simply cut the thread down to the required point and then trimmed off the excess. The good news is if I made the rod too short I three more tries for each one!

Modified Actuator Rod

And here is the difference – it’s actually about 25mm less than it started out! Reassemble the whole thing and magically it now fits where it needs to!

GT15 Kinugawa actuator

The other thing you will need to do potentially at this point is change the spring. Once the actuator rod is in the actuator this is actually not too bad but be a bit fiddly. First of position the actuator so the rod is sticking downward between the jaws of a vice. Tighened the vice to hold the rod in place then undo all the housing screws. Lift off the top housing and carefully remove the diaphragm underneath. Next you need to carefully release the rod to take the load off the spring. then you just unscrew the rod and take the aluminium piston and the spring underneath out the housing. Reassembly is just the reverse but the key is to put tension on the rod again and clamp it in place again before refitting the diaphragm and cap otherwise it’s very difficult to get the diaphragm correctly positioned without any wrinkles that could cause damage or leakage.

So now we have two turbos with adjustable wastegate actuators with a potential working range covering something like 3-30psi!

 

RX8 Project – Part 10, Turbo!

So this is about the time this whole project started getting a bit out of hand, when I decided I was going to need more power…significantly more.

I looked into what options I had –

Option 1 – I could stay naturally aspirated and probably skim the head to increase compression a bit and get more out of it but tuning in this way can be very intricate and looked to be more involved than I wanted for the amount of power I could expect.

Option 2 – Supercharger, there are a few options here. Realistically the most common supercharger these days the Eaton M45 found on the modern Mini cooper S is just too small for this so sticking with the positive displacement type we can get an M62 from a mercedes CLK230 and with the right pulley ratio it would probably be ideal for moderate improvements. For real degrees of silliness an M90 might well be needed and these are a little harder to find.

Option 3 – Turbo, this gives a huge amount of options due to the prevalence of turbo engines at the moment and would give potential for significant power gains comparatively cheaply and without needing to align belts.

After debating for a very long time the best way to go for a road car I settled on option 3 primarily for the simplicity aspect – I know very little about the intricacies of high compression engines and I know superchargers require a level of alignment very difficult to achieve with DIY manifolds! The next obvious question is how much power? Well following finding out from Noble that the rods in the engine fold up at something a bit over 300bhp I decide that from a cost and complexity point of view I’d aim for about 280bhp as a limit so I could keep the amount of parts I needed to a minimum – famous last words!

Now there’s a huge online argument about whether two smaller turbos or a single larger one gives the best throttle response and performance. This isn’t an argument I want to get into but in my case I decided twin turbo was the way to go for two reasons. Firstly because I could close mount them under the engine to keep the overall engine package as small as possible and so simplify the pipework on the exhaust side. Secondly because due to the government publicising the benefits of diesel there are now loads of small cheap turbos about for very little money..

Getting into sizing most of the information is that Noble used two T25 turbos. Taking a look at http://www.boosttown.com/forced_induction/air_amount_calculator.php

We can see that for this engine at 6000 rpm and 0.7 bar of boost we need about 27 lbs/min of total airflow. Next we need the T25 Map for a common inducer size:

T25 Compressor map

Looking at the map for the normal T25 turbo we can see that with two turbos to share the load and so only needing about 13.5 lb/hr at 1.7 pressure ratio the turbo is right in its optimal zone. Not a bad choice all in all but these are old design turbos and as a twin turbo configuration the actual  amount of available exhaust will be limited so the turbo may not spool until a bit high up the rev range so I started looking at other options which would give a good improvement across a wider rev range. To achieve this a smaller exhaust housing was needed and this is where the diesel engines come in. Turbos used for diesel engines tend to have smaller exhaust housings for this very reason and they’re abundant. This led me to the GT1549, this is a manufacturer specific version of the GT1548 turbo, people have reported them to be good for 180-200bhp which is right in the area we want.

GT1548 Compressor Map

In many ways a similar map to the T25 but the spindle speeds are noticeably higher. The unit as a whole is much smaller but will have less weight in the rotating components and as a result of the smaller exhaust housing the turbo should generate boost at lower RPM. I used to have a map for the exducer which confirms this but have since misplaced it. Now before anyone tells me “you can’t use a diesel turbo on a petrol” consider this – this same turbo was used on both a huge range of diesel engines but also on the Saab 9-5 V6 petrol. That said there is also a VNT version of this turbo (GT15xxV), VNT turbos don’t last long on petrol engines by all accounts.

So here we are, the turbosGT1549 x2 :

So there you have it, a short post but a complete change in the direction of the project from where it started off and we’re only just getting started!

 

 

RX8 Project – Part 8, Flywheels Part 2

Apologies for the long delay since my last post (more than a month!), life has been getting in the way of having time to do anything on blog of late. The good news is that the RX8 project has made some progress and this blog is still no-where near the current status so there’s still plenty to come!

In flywheels part one I mentioned how I ended up in a situation where I didn’t really think the cast flywheel was save to modify and how a chance encounter led me to a solution. The problem it presented is I’m primarily an electrical/electronic engineer, while I dabble fairly extensively in mechanical things designing a flywheel isn’t exactly something that comes up every day and the precision was critical so I spent a lot of time making sure I got it right!

Critical aspects as I saw them were the bolt pattern to match the crank, bolt points for a suitable clutch and and very accurate outer diameter to allow fitment of the RX8 starter ring gear.

Looking at these criteria one at a time the bolt pattern is an interesting one. At first glance all the 8 bolts appear to be evenly spaced around the crank on a PCD (Pitch Circle Diameter – this means the centre of each of the holes is placed on a circle). After checking my early flywheel model drawings against the real flywheel I noticed that all the bolts lined up except one which was just slightly wrong; ok, approximately 2mm, enough to be considered very wrong! Duratec V6 Crank Alignment

This suggested the pattern wasn’t exactly what I thought so I started checking exactly what the error was in different directions to figure out what was going on. After extensive measurement I managed to work out what was wrong, the bolts were indeed on a PCD they just weren’t evenly spaced. For even spacing the bolts would be at 45° intervals but one hole was shifted 4° round the PCD so it was 41° and 49° to the two nearest holes. Combined with a 76mm PCD this made the bolt pattern line up perfectly. This is actually quite useful because it means when the crank/flywheel are balanced they cannot be reassembled in the wrong alignment.

The crank also features a location register to make sure the centre of the flywheel is perfectly centred on the crank. The register is a raised lip accurately machined to a specific outer diameter so there is no lateral slop between the parts, in this case I measured this to be 44.40mm in diameter. when I trial fitted this it needed some emery on the crank to fit but this seemed due to surface rust where the engine had been stored in a damp room for a long time. Your mileage may vary!

Next up we had the clutch, I initially planned on using the RX8 clutch as I thought it would be stronger and have more options later but on further research it turned out RX8 clutches are very expensive indeed and anything other than a stock one gets very expensive very quickly and largely need to be imported so I started looking at other options. This took me back to the idea of using a Mondeo 240mm clutch, they’re cheap, readily available and the stock ones will handle a fair amount of power. Admittedly a stock kit is highly unlikely to last long with the amount of power this project could get to but there are readily available uprated covers and plates that could be used. Plus £50 on a project that may never really work isn’t too bad, £300 for a new RX8 stock clutch is more than the car cost! I also already head the factory Mondeo flywheel to take all the appropriate dimensions from which kept the process fairly simple.

The last issue was the ring gear, this is critical because the RX8 has its starter motor on the gearbox side and when because of this the options are either re-use the RX8 starter or butcher the RX8 bellhousing to allow an engine side starter to fit. For simplicity I figured I’d go with the RX8 starter since I was getting the flywheel made anyway. Starter ring gears are whats called an interference fit on the flywheel. In essence the ring gear is intentionally slightly smaller than the flywheel it is designed to fit onto and when the two parts are either pressed or heat fitted (heating up the ring so it expands and can be slipped into place) together. It is a tiny change in size when fitted and just the friction between the two parts that prevents the ring gear slipping when the engine is started hence why this is rather critical. To simplify this I modelled a nominal 290mm for the diameter of the lip this mounts on but supplied the ring gear to the machine shop and asked them to machine to an interference fit. This led to the following design:

RX8 Flywheel V6 – Machining Drawing

After a lot of double checking with these base measurements I needed to get the correct offset from the crank to make sure the clutch plate is in the correct position to be fully engaged with the gearbox splines. This led to me modelling everything to make sure it would all fit where it needed to:

RX8-V6 Clutch AssemblyHere you can see how everything stacks up. Between the bell housing and engine there is a 10mm spacer (grey) this represents the adaptor plate thickness. Clearly the bell housing has been simplified but the overall length is correct and the position of the splines (a little hard to see in the picture) and pilot bearing diameter (the reduced diameter) on the gearbox input shaft are correct.

Unfortunately having got all of this looking right and sent it over to the machinist and work starting on it I realised a couple minor mistakes, one was that I’d not offset the flywheel to match the spacing of the bell housing caused by the adaptor plate (shown above but this picture is from a later version) but related to that I hadn’t checked the offset to make sure the starter ring gear was actually in the right position to engage with the starter!

Turned out it was a little off and actually needed more offset but unfortunately the raw material for the flywheel had been delivered and machining had already begun and sadly it wasn’t big enough to allow for this extra thickness so I needed a new plan. The best I could come up with was to add a small spacer to correct this. Luckily this also allowed an opportunity to include a new pilot bearing location. This is a bearing that locates into the end of the crank to support the engine side of the gearbox input shaft and due to the gearbox adaptor plate thickness and the fact of it being a mismatched engine and gearbox the standard bearing was now too far away to support the shaft.

RX8 V6 Crank Spacer V1

This spacer corrects the problems above and still includes the correct bolt pattern, location diameters to keep everything centred. The 35mm internal diameter is the exact size of the bearing I used. This allowed a suitable bearing and a dust seal to be pressed into place and likely stay there, that said there’s a lip in the spacer to hold the bearing up and once the gearbox shaft is in place it physically can’t fall out. It’s probably worth pointing out here that this bearing only actually moves in use when the clutch is pressed, when driving along in a gear the clutch locks the crank and input shaft together and so the bearing is rotating overall but the inside and outside are rotating at the same speed so the vast majority of the time it shouldn’t experience any wear.

The final product to be coming in part 3!

 

 

 

 

 

 

 

RX8 Project – Part 4, The New Engine

Following part 3 where the original rotary engine proved to be a lost cause I decided to research possible engines  that could be swapped in but there were a few criteria and limitations I had:

Size – The RX8 has a reasonable size engine bay overall but due to the size and position of the standard engine there are some limiting factors to consider. I’m aware others have swapped V8’s (among others) into RX8 shells but this generally involves extensive modification of the engine bay, steering rack and even front cross member due to the length of the engine.

Weight – The RX8 is famous for being very balanced largely due to the compact size and resulting low mounting position of the standard engine. No standard piston engine will quite match up but I wanted to get as close as reasonably possible.

Power – The standard RX8 was available with either 192 or 231 bhp and so I wanted to get to ideally the upper figure (even though mine actually started as the lower 192 model) or even exceed it if possible.

Cost & availibility – I wanted  and engine that was cheap to buy and for which spares were cheap and readily available. This was always intended to be a budget project to swap the engine more cheaply than replacing it.

After considering a huge number of options from things people have done before (VW 1.8t engine) to completely off the wall ideas that would probably upset all the RX8 purists (1.9 turbo diesel?) I eventually came across a couple really  promising candidates – the Mazda KLDE and Ford AJ series engines. These are both very compact aluminium construction V6’s which should be short enough that no modification to the front cross member should be needed. It became apparent pretty quickly that the KLDE was hard to find and attracted a comparatively high price so I ruled this out.

The AJ V6 is related to the older KLDE and is available in a few flavours. It was produced as the AJ25 and AJ30 (2.5 and 3.0 litre respectively) and were used in a a range of cars in slightly different configurations including the Ford Mondeo ST220 (along with US Contour and Taurus), Jaguar S-type and X-Type along with several others. Some (including the S-type version) have VVT.

S-type V6
S-type V6

So after an eBay search and a hard earned £165 (including delivery) later I had this prime example of an AJ25 from an S type Jag sat on my driveway. At this stage I went for the 2.5L because the 3.0L version attracts a more premium price and since I had no real idea if it I would ever get it all together I bought the cheap version. Since the block is identical for both the logic was if I made one fit and decided I just didn’t have enough power I could swap all the custom parts over to a 3.0. Clearly there’s a lot of extraneous parts on here I won’t be using and once much of this is stripped the true compact size of the engine is a bit clearer.

Stripped AJ25
Stripped AJ25

There are a few reasons I picked this version of this engine. One was that the Mondeo version, which is more common, has the water pump driven from and extended camshaft on the rear of the engine because in the Mondeo the engine is in a transverse orientation. To fit the engine to the RX8 the engine will need to be installed longitudinally and the rear will have to be very close to the firewall so this is a non-starter. The Jag version has the water pump front mounted so avoids this problem. The Jag version also includes direct acting mechanical bucket cam followers and VVT. Sadly the 2.5L generally only offers 200bhp in this configuration so it’s a little down on where I really wanted to be but the torque is 240 Nm compared to the 211 Nm peak of the 231 bhp RX8 and a considerably wider torque band so it should still go well.

Around this time I found out that the Noble M12 uses this same 2.5L engine running as a twin turbo at 325 bhp. The later M400 uses the 3.0L version of the engine but they again two turbos to it and get something in the order of 425 bhp out of it with minimal additional modifications. Reports from Noble suggest it is capable of even more but was limited because they were planning on upping the power later selling this as  another model but due due to the change of direction and ford taking the engine out of production this never happened. More info can be found here : Noble M12 History

I also made the decision to keep the RX8 gearbox so I could retain the standard carbon prop shaft in the RX8 so next up is the challenge of making an engine made by Ford, which was salvaged from a Jag, fit the gearbox from a Mazda!

More in part 5…